Censored Regression
Introduction
Data collected from an experimental study is sometimes censored, so that only partial information is known about a subset of observations. For instance, when measuring the lifespan of mice, we may find a number of subjects live beyond the duration of the project. Thus, all we know is the lower bound on their lifespan. This right censoring can be incorporated into a regression model via convex optimization.
Suppose that only \(K\) of our observations \((x_i,y_i)\) are fully observed, and the remaining are censored such that we observe \(x_i\), but only know \(y_i \geq D\) for \(i = K+1,\ldots,m\) and some constant \(D \in {\mathbf R}\). We can build an OLS model using the uncensored data, restricting the fitted values \(\hat y_i = x_i^T\beta\) to lie above \(D\) for the censored observations:
\[ \begin{array}{ll} \underset{\beta}{\mbox{minimize}} & \sum_{i=1}^K (y_i - x_i^T\beta)^2 \\ \mbox{subject to} & x_i^T\beta \geq D, \quad i = K+1,\ldots,m. \end{array} \]
This avoids the bias introduced by standard OLS, while still utilizing
all of the data points in the regression. The constraint requires only
one more line in CVXR
.
Example
We will generate synthetic data for this example, censoring observations beyond a value \(D\).
## Problem data
n <- 30
M <- 50
K <- 200
set.seed(n * M * K)
X <- matrix(stats::rnorm(K * n), nrow = K, ncol = n)
beta_true <- matrix(stats::rnorm(n), nrow = n, ncol = 1)
y <- X %*% beta_true + 0.3 * sqrt(n) * stats::rnorm(K)
## Order variables based on y
idx <- order(y, decreasing = FALSE)
y_ordered <- y[idx]
X_ordered <- X[idx, ]
## Find cutoff and censor
D <- (y_ordered[M] + y_ordered[M + 1]) / 2
censored <- (y_ordered > D)
y_censored <- pmin(y_ordered, D)
We now fit regular OLS, OLS using just the censored data and finally the censored regression.
## Regular OLS
beta <- Variable(n)
obj <- sum((y_censored - X_ordered %*% beta)^2)
prob <- Problem(Minimize(obj))
result <- solve(prob)
beta_ols <- result$getValue(beta)
## OLS using uncensored data
obj <- sum((y_censored[1:M] - X_ordered[1:M,] %*% beta)^2)
prob <- Problem(Minimize(obj))
result <- solve(prob)
beta_unc <- result$getValue(beta)
## Censored regression
obj <- sum((y_censored[1:M] - X_ordered[1:M,] %*% beta)^2)
constr <- list(X_ordered[(M+1):K,] %*% beta >= D)
prob <- Problem(Minimize(obj), constr)
result <- solve(prob)
beta_cens <- result$getValue(beta)
Here’s are some plots comparing the results. The blue diamond points are estimates.
plot_results <- function(beta_res, title) {
d <- data.frame(index = seq_len(K),
y_ordered = y_ordered,
y_fit = as.numeric(X_ordered %*% beta_res),
censored = as.factor(censored))
ggplot(data = d) +
geom_point(mapping = aes(x = index, y = y_ordered, color = censored)) +
geom_point(mapping = aes(x = index, y = y_fit), color = "blue", shape = 23) +
geom_abline(intercept = D, slope = 0, lty = "dashed") +
labs(x = "Observations", y = "y") +
ggtitle(title)
}
plot_results(beta_ols, "Regular OLS.")
plot_results(beta_unc, "OLS using uncensored data.")
plot_results(beta_cens, "Censored Regression.")
## Testthat Results: No output is good
## Error: `beta_ols` not identical to censored$beta_ols.
## Objects equal but not identical
Session Info
sessionInfo()
## R version 4.4.2 (2024-10-31)
## Platform: x86_64-apple-darwin20
## Running under: macOS Sequoia 15.1
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib; LAPACK version 3.12.0
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## time zone: America/Los_Angeles
## tzcode source: internal
##
## attached base packages:
## [1] stats graphics grDevices datasets utils methods base
##
## other attached packages:
## [1] ggplot2_3.5.1 CVXR_1.0-15 testthat_3.2.1.1 here_1.0.1
##
## loaded via a namespace (and not attached):
## [1] gmp_0.7-5 clarabel_0.9.0.1 sass_0.4.9 utf8_1.2.4
## [5] generics_0.1.3 slam_0.1-54 blogdown_1.19 lattice_0.22-6
## [9] digest_0.6.37 magrittr_2.0.3 evaluate_1.0.1 grid_4.4.2
## [13] bookdown_0.41 pkgload_1.4.0 fastmap_1.2.0 rprojroot_2.0.4
## [17] jsonlite_1.8.9 Matrix_1.7-1 brio_1.1.5 Rmosek_10.2.0
## [21] fansi_1.0.6 scales_1.3.0 codetools_0.2-20 jquerylib_0.1.4
## [25] cli_3.6.3 Rmpfr_0.9-5 rlang_1.1.4 Rglpk_0.6-5.1
## [29] bit64_4.5.2 munsell_0.5.1 withr_3.0.2 cachem_1.1.0
## [33] yaml_2.3.10 tools_4.4.2 osqp_0.6.3.3 Rcplex_0.3-6
## [37] rcbc_0.1.0.9001 dplyr_1.1.4 colorspace_2.1-1 gurobi_11.0-0
## [41] assertthat_0.2.1 vctrs_0.6.5 R6_2.5.1 lifecycle_1.0.4
## [45] bit_4.5.0 desc_1.4.3 cccp_0.3-1 pkgconfig_2.0.3
## [49] bslib_0.8.0 pillar_1.9.0 gtable_0.3.6 glue_1.8.0
## [53] Rcpp_1.0.13-1 highr_0.11 xfun_0.49 tibble_3.2.1
## [57] tidyselect_1.2.1 knitr_1.48 farver_2.1.2 htmltools_0.5.8.1
## [61] labeling_0.4.3 rmarkdown_2.29 compiler_4.4.2